Some Basic Concepts of Chemistry

- What is the mass of water (in g) produced from 445 g of $C_{57}H_{110}O_6$ in the following reaction? $2C_{57}H_{110}O_6(s) + 163 O_2(g) \rightarrow 114CO_2(g) + 110 H_2O(1)$
- What amount of sugar $(C_{12}H_{22}O_{11})$ (in g) is required to prepare 2 L of its 0.1 M aqueous solution?
- 5 moles of AB, weigh 125×10^{-3} kg and 10 moles of A₂B₂ weigh 300×10^{-3} kg. What is the sum of molar mass of A (M_A) and molar mass of B (M_B) in g mol⁻¹?
- 5.0 g of a certain element X forms 10.0 g of its oxide having the formula X_4O_6 . What is the atomic mass of X in amu?
- 5. A 100% pure sample of a divalent metal carbonate weighing 2 g on complete thermal decomposition releases 448 cc of carbon dioxide at STP. What is the equivalent mass of the metal?
- The specific heat of a metal is 0.16 cal g⁻¹. The equivalent 6. mass of the metal is 20.04. What is the correct atomic mass of the metal in grams?
- 1.500g of hydroxide of a metal gave 1.000g of its oxide on heating. What is the equivalent mass of the metal?
- 8. Limestone (CaCO₃) decomposes into quicklime (CaO) on strong heating. How much quantity of limestone will be required to prepare 100 kg of quicklime?
- 1 mole of mixture of CO and CO₂ requires exactly 28 g KOH in solution for complete conversion of all the CO2 into K₂CO₃. How much amount more of KOH (in g) will be required for conversion into K₂CO₃. (If one mole of mixture is completely oxidized to CO_2 ?
- 1 mol of N, and 4 mol of H, are allowed to react in a sealed container and after the reaction some water is introduced in it. The aqueous solution formed required 1 L of 1 M HCl for neutralization. Calculate the mole fraction of the gaseous product in the mixture after the reaction.
- 11. 6.2 g of a sample containing Na₂CO₃, NaHCO₃ and nonvolatile inert impurity on gentle heating loses 5% of its mass due to reaction $2NaHCO_3 \longrightarrow Na_2CO_3 + H_2O + CO_2$. Residue is dissolved in water and formed 100 mL solution and its 10 mL portion requires 7.5 mL of 0.2 M aqueous solution of BaCl₂ for complete precipitation of carbonates. Determine mass (in g) of Na₂CO₃ in the original sample.

12.
$$H_2O_2 + 2KI \xrightarrow{40\% \text{ yield}} I_2 + 2KOH$$

 $H_2O_2 + 2KMnO_4 + 3H_2SO_4 \xrightarrow{50\% \text{ yield}} K_2SO_4 + 2MnSO_4 + 3O_2 + 4H_2O_3$

150 mL of H₂O₂ sample was divided into two parts. First part was treated with KI and formed KOH required 200 mL of

- M/2 H₂SO₄ for neutralisation. Other part was treated with KMnO₄ yielding 6.74 litre of O₂ at 1 atm. and 273 K. Using % yield indicated find volume strength of H₂O₂ sample used.
- 5 g sample contain only Na₂CO₃ and Na₂SO₄. This sample is dissolved and the volume made up to 500 mL. 25 mL of this solution neutralizes 20 mL of 0.1 M H₂SO₄. Calculate the percentage of Na₂SO₄ in the sample.
- A mixture of FeO and Fe₂O₃ is completely reacted with 100 mL of 0.25 M acidified KMnO₄ solution. The resultant solution was then treated with Zn dust which converted Fe³⁺ of the solution to Fe²⁺. The Fe²⁺ required 1000 mL of 0.10 M K₂Cr₂O₇ solution. Find out the weight percentage of Fe₂O₃ in the mixture.
- An impure sample of sodium oxalate (Na₂C₂O₄) weighing 0.20 g is dissolved in aqueous solution of H₂SO₄ and solution is titrated at 70°C, requiring 45 mL of 0.02 M KMnO₄ solution. The end point is overrun, and back titration in carried out with 10 mL of 0.1 M oxalic acid solution. Find the percentage purity of Na₂C₂O₄ in sample.

SOLUTIONS

$$2C_{57}H_{110}O_6(s) + 163O_2(g) \longrightarrow$$

114 CO₂(g)+110 H₂O(l)

$$n = \frac{445}{890} = 0.5$$

Now, moles of water = $\frac{110}{2} \times 0.5 = 27.5$

... Mass of water = $27.5 \times 18 = 495 \text{ g}$

(68.4) As we know,

Molarity =
$$\frac{\text{No.of moles of sugar}}{\text{Volume of solution (in L)}}$$

$$0.1 = \frac{\text{No.of moles of sugar}}{2 \text{ L}}$$

So, no. of moles of sugar = 0.2 mol

 \therefore Mass of sugar = No. of moles of sugar \times

Molar mass of sugar

$$=0.2 \times 342 = 68.4 \text{ g}$$

3. (15)Molar mass of A = 5×10^{-3}

Molar mass of B = 10×10^{-3}

5 mol AB, weighs 125 g

$$\therefore AB_2 = 25 \text{ g/mol}$$

10 mol A₂B₂ weighs 300 g

$$\therefore A_2B_2 = 30 \text{ g/mol}$$

 \therefore Molar mass of A(M_A) = 5 g

Molar mass of B $(M_B) = 10 g$

$$\Rightarrow$$
 5 + 10 = 15 g

(24)Using the relationship

Mol. mass of oxide mass of oxide Mass of metal in molar mass mass of metal

$$\frac{4x+96}{4x} = \frac{10}{5} \Rightarrow x = 24$$

5. (20)Divalent metal carbonate means MCO₃.

$$\begin{array}{c} \text{MCO}_3 \xrightarrow{\quad \Delta \quad} \text{MO} + \begin{array}{c} \text{CO}_2 \\ \text{1mol} \\ \text{2g} \end{array}$$

448 cc evolves from 2g

1cc evolves from $\frac{2}{448}$ g

22400 cc will evolve from $\frac{2}{448} \times 22400 \text{ g} = 100 \text{ g}$

i.e. 100 g is the molecular weight of the carbonate.

Then M.Wt. of metal =
$$100 - (12 + 3 \times 16) = 40 \text{ g}$$

(wt. of carbonate, CO_3^{2-})

Equivalent weight =
$$\frac{\text{Molecular weight}}{\text{Valency}} = \frac{40}{2} = 20$$

(40.08) Following Dulong-Pettit law, approx. atomic mass

$$=\frac{6.4}{\text{Specific heat}} = \frac{6.4}{0.16} = 40$$

Valency of the metal =
$$\frac{40}{\text{Equiv.mass}} = \frac{40}{20.04} = 2$$

Correct atomic mass = $valency \times eq.mass$ $=2\times20.04=40.08\,\mathrm{g}$

(10)By the law of equivalents: 7.

$$\frac{E + Eq. \ mass \ of \ OH^{-}}{E + Eq. \ mass \ of \ O} = \frac{mass \ of \ metal \ hydroxide}{mass \ of \ metal \ oxide}$$

(E = Eq. mass of metal)

or
$$\frac{E+17}{E+8} = \frac{1.5}{1} \Rightarrow E = 10$$

(178.57) The equation representing thermal decomposition of limestone is:

 $CaCO_3 \longrightarrow CaO + CO_5$

It is seen from the above equation that 56 g of quicklime is obtained from 100 g of limestone.

Thefore 100 kg of CaO is obtained from

$$\frac{100}{56} \times 100 \times 10^3 = 178.57 \times 10^3 \,\mathrm{g}$$

= 178.57 kg of limestone.

9. (84)
$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$
;

$$CO_2 + 2KOH \rightarrow K_2CO_3 + H_2O$$

Moles of KOH =
$$\frac{28}{56}$$
 = 0.50

It corresponds to 0.25 mol of CO₂

Hence mol of CO = 1 - 0.25 = 0.75

≡ mole of CO₂ formed

Mol of KOH required = $2 \times 0.75 = 1.5 = 1.5 \times 56 = 84$ g

10. (0.25) $N_2 + 3H_2 \implies 2NH_3$,

$$NH_3 + HCl \longrightarrow NH_4Cl$$

Moles of NH_3 formed = 1 L of 1 M HCl = 1 mol

Moles of N_2 left = 1 – Moles of N_2 reacted

$$=1-\frac{1}{2}=0.5$$

 $= 1 - \frac{1}{2} = 0.5$ Moles of H₂ left = 4 - Moles of H₂ reacted

$$=4-\frac{3}{2}=2.5$$

Hence, mole fraction of NH₃ =
$$\frac{\text{Moles of NH}_3}{\text{Total moles}}$$

= $\frac{1}{1+0.5+2.5} = 0.25$

11. (1.06) Loss in mass due to heating = $6.2 \times \frac{5}{100} = 0.31 \text{ g}$ $2NaHCO_3 \longrightarrow Na_2CO_3 + CO_2 + H_2O$ 44+ 18 g loss

1 mole NaHCO₃ \longrightarrow 31 g loss due to heating 0.31 g loss from 0.01 mole of NaHCO₃

Moles of Na₂CO₃ produced =
$$\frac{0.01}{2}$$
 = 0.005

Total moles of carbonate reacted with BaCl,

$$= \left(7.5 \times 0.2 \times \frac{100}{10}\right) \times 10^{-3} = 0.015 \text{ mol}$$

Moles of carbonates in original sample =0.015-0.005=0.01mass of Na₂CO₃ in original sample $=0.01 \times 106 = 1.06 \,\mathrm{g}$

12. (33.6) Moles of $H_2SO_4 = 0.1$; mole of KOH = 0.2 moles of H₂O₂ used in first reaction

$$=\frac{0.2}{2}\times\frac{1}{0.4}=0.25$$

moles of
$$O_2$$
 produce = $\frac{6.74}{22.4} = 0.3$

.. moles of H2O2 used in second reaction

$$=\frac{0.3}{3\times0.5}=0.2$$

Total mole of H_2O_2 consumed = 0.45

Molarity of
$$H_2O_2 = \frac{0.45}{0.15} = 3 \text{ M}.$$

Volume strength = $11.2 \times 3 = 33.6$ volumes

13. (15.2) Only Na₂CO₃ reacts with H₂SO₄; $Na_2CO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2CO_3$ m-moles of $Na_2CO_3 = m$ -moles of H_2SO_4 $=20 \times 0.1 = 2$

m-moles of Na₂CO₃ in 500 mL solution

$$=\frac{500}{25}\times 2=40$$

wt. of Na₂CO₃ = $40 \times 106 \times 10^{-3} = 4.24$ g

% of Na₂CO₃ =
$$\frac{4.24}{5}$$
 × 100 = 84.8

$$\therefore$$
 % Na₂SO₄ = 100 - 84.8 = 15.2

14. (80.85) m-eq. of FeO = m-eq. of KMnO₄ $=0.25 \times 5 \times 100$

m-mole of FeO
$$(n=1)$$
 = $\frac{0.25 \times 100 \times 5}{1}$ = 125

Total m-eq. or m-mole. of Fe2+

$$=1000 \times 0.1 \times 6 = 600$$

(from FeO and Fe₂O₃ after reaction with Zn dust) m-mole of Fe^{2+} from $Fe_2O_3 = 600 - 125 = 475$

m-mole of
$$Fe_2O_3 = \frac{475}{2}$$

Mass of FeO =
$$\frac{125 \times (56+16)}{1000}$$
 g = 9 g

Mass of
$$Fe_2O_3 = \frac{475}{2} \times \frac{160}{1000} = 38 \text{ g}$$

$$\% \operatorname{Fe_2O_3} = \frac{38}{38+9} \times 100 = 80.85\%$$

15. (83.75) m-eq. of $Na_2C_2O_4 = m$ -eq. of $KMnO_4$ reacted total m-eq. of KMnO₄- excess m-eq. of KMnO₄ reacted with H₂C₂O₄

$$=45 \times 0.02 \times 5 - 10 \times 0.1 \times 2 = 2.5$$

$$1000 \times \frac{W}{134} \times 2 = 2.5$$

$$W_{Na_2C_2O_4} = 0.1675 g$$

% purity of Na₂C₂O₄ in sample

$$= \frac{0.1675}{0.2} \times 100 = 83.75$$

